
Faculty of Science
Information and Computing Sciences

1

Type-directed Diffing of Structured Data

Victor Cacciari Miraldo, Pierre-Évariste Dagand
and Wouter Swierstra

January 5, 2018

Faculty of Science
Information and Computing Sciences

2

The diff utility

The Unix diff utility compares two files line-by-line, computing
the smallest number of insertions and deletions to transform
one into the other.

It was developed as far back as 1976 – but still forms the heart
of many modern version control systems such as git, mercurial,
svn, and many others.

Faculty of Science
Information and Computing Sciences

3

Example: comparing two files

jabber.txt

Twas brillig, and the slithy toves

Waved to Mars, where a robot roves;

Did gyre and gimble in the wabe;

And the mome raths outgrabe.

wocky.txt

Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.

Faculty of Science
Information and Computing Sciences

4

Example: comparing two files

Twas brillig, and the slithy toves

- Waved to Mars, where a robot roves;

Did gyre and gimble in the wabe;

+ All mimsy were the borogoves,

And the mome raths outgrabe.

The diff utility computes a patch, that can be used to
transform the one file into the other.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

Tries to preserve as much information as possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

Tries to preserve as much information as possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

5

Smallest edit script

Crucially, diff always computes the smallest patch –
minimizing the number of insertions and deletions.

Tries to preserve as much information as possible.

But sometimes it still doesn’t do a very good job.

Faculty of Science
Information and Computing Sciences

6

Example: comma separated values

bibliography.csv

Lewis Carroll, The alphabet cipher

Lewis Carroll, The game of logic

Lewis Carroll, The hunting of the snark

How would this file change if I add publication dates?

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher

+ Lewis Carroll, The alphabet cipher, 1868

- Lewis Carroll, The game of logic

+ Lewis Carroll, The game of logic, 1887

- Lewis Carroll, The hunting of the snark

+ Lewis Carroll, The hunting of the snark, 1876

Syntatically changes every line.

Semantically, data was not modified.

Particularly important when diff’ing source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher

+ Lewis Carroll, The alphabet cipher, 1868

- Lewis Carroll, The game of logic

+ Lewis Carroll, The game of logic, 1887

- Lewis Carroll, The hunting of the snark

+ Lewis Carroll, The hunting of the snark, 1876

Syntatically changes every line.

Semantically, data was not modified.

Particularly important when diff’ing source code.

Faculty of Science
Information and Computing Sciences

7

Example: comma separated values

- Lewis Carroll, The alphabet cipher

+ Lewis Carroll, The alphabet cipher, 1868

- Lewis Carroll, The game of logic

+ Lewis Carroll, The game of logic, 1887

- Lewis Carroll, The hunting of the snark

+ Lewis Carroll, The hunting of the snark, 1876

Syntatically changes every line.

Semantically, data was not modified.

Particularly important when diff’ing source code.

Faculty of Science
Information and Computing Sciences

8

What is the diff over structured data?

Faculty of Science
Information and Computing Sciences

9

Questions

▶ How can we represent data types?

▶ How can we represent patches on these data types?

▶ How can we compute such patches?

▶ How can we merge such patches?

Faculty of Science
Information and Computing Sciences

10

Questions

▶ How can we represent data types?

▶ How can we represent patches on these data types?

▶ How can we compute such patches?

▶ How can we merge such patches?

Faculty of Science
Information and Computing Sciences

11

Universe of discourse

We will use Agda as our metalanguage to answer these
questions and start by fixing a ‘sums of products’ universe:

data Atom : Set where
K : U → Atom
I : Atom

Prod : Set
Prod = List Atom

Sum : Set
Sum = List Prod

Here we assume some ‘base universe’ U, storing the atomic
types such as integers, characters, etc.

Faculty of Science
Information and Computing Sciences

12

Semantics

We can interpret these types as pattern functors:

J · Ka : Atom → (Set → Set)JIKa X = XJK κKa X = JκKk
J · Kp : Prod → (Set → Set)J[]Kp X = UnitJa :: asKp X = JαKa X × JπKp X

J · Ks : Sum → (Set → Set)J[]Ks X = ⊥Jp :: psKs X = JpKp X ⊎ JpsKs X

Faculty of Science
Information and Computing Sciences

13

Fixpoints

Given any element of our ‘sums of products’ universe, we can
compute the corresponding pattern functor.

Taking the least fixpoint of this functor allows us to tie the
recursive knot:

data Fix (s : Sum) : Set where
⟨·⟩ : JsKs (Fix s) → Fix s

Faculty of Science
Information and Computing Sciences

14

Example: 2-3 trees

We can represent a 2-3-tree, usually defined as follows:

data Tree : Set where
leaf : Tree
2-node : N → Tree → Tree → Tree
3-node : N → Tree → Tree → Tree → Tree

by the following sum-of-products:

TreeF : Sum
TreeF = let leafT = []

node2T = [K N , I , I]
node3T = [K N , I , I , I]

in [leafT , node2T , node3T]

Faculty of Science
Information and Computing Sciences

15

Questions

▶ How can we represent data types?

▶ How can we represent patches on these data types?

▶ How can we compute such patches?

▶ How can we merge such patches?

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script transforms treeA into treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

Faculty of Science
Information and Computing Sciences

16

2-3-trees

treeA = 2-node 7 t1 t2

treeB = 3-node 12 (2-node 7 t1 leaf) leaf leaf

What edit script transforms treeA into treeB?

It is not just a list of insertions and deletions!

We can insert new constructors, modify values stored in the
tree, delete subtrees, or copy over existing data.

Faculty of Science
Information and Computing Sciences

17

Representing diffs

We define a type indexed data type, to account for changes,
defining what it means to modify each layer of our universe.

▶ sums

▶ products

▶ atomic values

From these pieces we define our overall type for diffs.

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, either:

1. x and y are equal;

2. x and y the same outermost constructor, but are not equal
trees;

3. x and y have a different outermost constructor.

Spines, S, capture these three cases.

Faculty of Science
Information and Computing Sciences

18

Spines: changes to sums

Given two arbitrary tree structures, x and y, either:

1. x and y are equal;

2. x and y the same outermost constructor, but are not equal
trees;

3. x and y have a different outermost constructor.

Spines, S, capture these three cases.

Faculty of Science
Information and Computing Sciences

19

Spines

Assuming we know what patches on atoms (At) and products
(Al) are, we define:

data S (σ : Sum) : Set where
Scp : S σ
Scns : (C : Constr σ)

→ All At (fields C)
→ S σ

Schg : (C1 C2 : Constr σ)
→ Al (fields C1) (fields C2)
→ S σ

Next we define the diff for products and atoms.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

How to compare fields of reconciled constructors? (Schg case)

Each value has a list of fields – the product structure.

These fields can have different types!

Good news: Unix diff algorithm computes a diff for lists of
lines.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

How to compare fields of reconciled constructors? (Schg case)

Each value has a list of fields – the product structure.

These fields can have different types!

Good news: Unix diff algorithm computes a diff for lists of
lines.

Faculty of Science
Information and Computing Sciences

20

Alignments: changes to products

How to compare fields of reconciled constructors? (Schg case)

Each value has a list of fields – the product structure.

These fields can have different types!

Good news: Unix diff algorithm computes a diff for lists of
lines.

Faculty of Science
Information and Computing Sciences

21

Alignments: changes to products

To describe a change from one list of constructor fields to
another, we require an edit script that:

▶ changes one field into another;

▶ deletes fields;

▶ inserts new fields.

Faculty of Science
Information and Computing Sciences

22

Alignments

data Al : Prod → Prod → Set where
A0 : Al [] []
AX : At α → Al π1 π2 → Al (α :: π1) (α :: π2)
Adel : JαKa → Al π1 π2 → Al (α :: π1) π2
Ains : JαKa → Al π1 π2 → Al π1 (α :: π2)

A value of type Al π1 π2 indicates which fields of one
constructor are matched with which fields of another.

Analogous to UNIX diff and lines.

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

23

Atoms

Finally, we still need to handle our atomic values.

For constant types, we can check if they are equal or not.

But what about recursive subtrees?

Faculty of Science
Information and Computing Sciences

24

Handling recursive data types

So far our spines compare the outermost constructors.

Oftentimes, one wants to delete certain constructors (exposing
its subtrees) or insert new constructors.

We cannot handle such changes with the data types we have
seen so far. . .

Faculty of Science
Information and Computing Sciences

25

Accounting for recursion

Our final patch type identifies three cases:

1. Insertion of a constructor, with a zipper over its fields;

2. Deletion the outermost constructor, with a zipper over its
fields;

3. A choice of spine, alignment, and a patch on atomic values;

The first two carry that zipper to point out where to
insert/delete a subtree. We call this the context.

Faculty of Science
Information and Computing Sciences

26

Applying patches

We can define generic operations – such as patch application –
that applies a patch to a given tree:

apply : Patch → Fix σ → Maybe (Fix σ)

This patch is guaranteed to preserve types.

It may still fail – when encountering an unexpected constructor
or atomic value – but it will never produce ill-formed data.

Faculty of Science
Information and Computing Sciences

27

Questions

▶ How can we represent data types?

▶ How can we represent patches on these data types?

▶ How can we compute such patches?

▶ How can we merge such patches?

Faculty of Science
Information and Computing Sciences

28

Computing Patches

Many patches transform one x into a y .

Too expensive to enumerate. Counting copies not enough.

Heuristics to prune the search space.

▶ UNIX diff3.

▶ Edit scripts preorder traversal.

▶ . . .

Implemented by the means of Oracles.

Faculty of Science
Information and Computing Sciences

28

Computing Patches

Many patches transform one x into a y .

Too expensive to enumerate. Counting copies not enough.

Heuristics to prune the search space.

▶ UNIX diff3.

▶ Edit scripts preorder traversal.

▶ . . .

Implemented by the means of Oracles.

Faculty of Science
Information and Computing Sciences

28

Computing Patches

Many patches transform one x into a y .

Too expensive to enumerate. Counting copies not enough.

Heuristics to prune the search space.

▶ UNIX diff3.

▶ Edit scripts preorder traversal.

▶ . . .

Implemented by the means of Oracles.

Faculty of Science
Information and Computing Sciences

28

Computing Patches

Many patches transform one x into a y .

Too expensive to enumerate. Counting copies not enough.

Heuristics to prune the search space.

▶ UNIX diff3.

▶ Edit scripts preorder traversal.

▶ . . .

Implemented by the means of Oracles.

Faculty of Science
Information and Computing Sciences

29

Computing Patches: Oracles

Fix σ × Fix σ
enum // List Patch

best
��

Patch

Flag indicating copy:

data Fixa (s : Sum) : Set where
⟨·, ·⟩ : Bool → JsKs (Fixa s) → Fixa s

Domain specific. The better the Oracle, the better the resulting
patch.

Faculty of Science
Information and Computing Sciences

29

Computing Patches: Oracles

Fix σ × Fix σ
enum //

O
��

List Patch

best
��

Fixa σ × Fixa σ
tr

// Patch

Flag indicating copy:

data Fixa (s : Sum) : Set where
⟨·, ·⟩ : Bool → JsKs (Fixa s) → Fixa s

Domain specific. The better the Oracle, the better the resulting
patch.

Faculty of Science
Information and Computing Sciences

29

Computing Patches: Oracles

Fix σ × Fix σ
enum //

O
��

List Patch

best
��

Fixa σ × Fixa σ
tr

// Patch

Flag indicating copy:

data Fixa (s : Sum) : Set where
⟨·, ·⟩ : Bool → JsKs (Fixa s) → Fixa s

Domain specific. The better the Oracle, the better the resulting
patch.

Faculty of Science
Information and Computing Sciences

30

Questions

▶ How can we represent data types?

▶ How can we represent patches on these data types?

▶ How can we compute such patches?

▶ How can we merge such patches?

Faculty of Science
Information and Computing Sciences

31

Merging Square

Merging disjoint patches trivially commutes:

x
p

����
��
��
�� q

��?
??

??
??

y

merge p q
��>

>>
>>

>>
> y′

merge q p
����
��
��
��

z

That is,

apply (merge p q) ◦ apply p ≡ apply (merge q p) ◦ apply q

Faculty of Science
Information and Computing Sciences

31

Merging Square

Merging disjoint patches trivially commutes:

x
p

����
��
��
�� q

��?
??

??
??

y

merge p q
��>

>>
>>

>>
> y′

merge q p
����
��
��
��

z

That is,

apply (merge p q) ◦ apply p ≡ apply (merge q p) ◦ apply q

Faculty of Science
Information and Computing Sciences

32

Related work

▶ There is a great deal of work on comparing (untyped) tree
comparisons – but much less work that attempts to exploit
the type structure that we have available.

▶ Lempsink et al. & Vassena are a notable exception – but
run a linear diff on the traversal of the tree. This it hard to
guarantee that later operations – such as merging patches
– produce well-formed trees.

Faculty of Science
Information and Computing Sciences

33

Looking ahead

Work in Progress

▶ Prove properties about the efficient route of the
“computing patches” square.

▶ Empirical Validation: Analisys of Clojure data from GitHub
repos. Conducted by our MSc Giovanni Garufi.

Future Work

▶ Implement a proof-of-concept in Haskell.

▶ Incorporate conflicts to our model.

Faculty of Science
Information and Computing Sciences

34

Type-directed Diffing of Structured Data

Victor Cacciari Miraldo, Pierre-Évariste Dagand
and Wouter Swierstra

January 5, 2018

