
Task Oriented Pearl:
Distributed Blockchain Applications

M. Lubbers1,2 J.M. Jansen1

1Military Technical Sciences
Netherlands Defense Academy

2Institute for Computing and Information Sciences
Radboud University Nijmegen

5th January, 2018

Hashing functions

Hash function

:: HashFun :== (String → String)

Properties

I Deterministic

I Uniform

I Fixed size output

I Non-invertible

Examples

I MD{2,4,5,6}
I SHA{1,224,256,2,385,512,3}
I BLAKE{-256,-512,2s,2b}

e.g. 03897e8ab0b92b39898dc58be3e03e15af4ff710

Hashing functions

Hash function

:: HashFun :== (String → String)

Properties

I Deterministic

I Uniform

I Fixed size output

I Non-invertible

Examples

I MD{2,4,5,6}
I SHA{1,224,256,2,385,512,3}
I BLAKE{-256,-512,2s,2b}

e.g. 03897e8ab0b92b39898dc58be3e03e15af4ff710

Block

What is a block

:: Block = {data :: String , nonce :: Int}
:: Predicate :== (String → Bool)

Mining of blocks

I Hash the data appended with the nonce

I Hash predicate

I Leading zeros

I Bitcoin has 18 leading zeros

I Finding the nonce leading to a valid hash

Block

What is a block

:: Block = {data :: String , nonce :: Int}
:: Predicate :== (String → Bool)

Mining of blocks

I Hash the data appended with the nonce

I Hash predicate

I Leading zeros

I Bitcoin has 18 leading zeros

I Finding the nonce leading to a valid hash

Blockchain

What is a blockchain

:: Block = { data :: String
, nonce :: Int
, prevHash :: String
}

:: BlockChain :== [Block]

Mining of the blockchain

I Hash the data appended with the nonce and the previous hash

I Block is dependant on the previous block

I Valid only if all hashes match adhere the predicate

Blockchain

What is a blockchain

:: Block = { data :: String
, nonce :: Int
, prevHash :: String
}

:: BlockChain :== [Block]

Mining of the blockchain

I Hash the data appended with the nonce and the previous hash

I Block is dependant on the previous block

I Valid only if all hashes match adhere the predicate

Mining a block in FP

mine :: HashFun Predicate Block [Int] → [Int]
mine hash pred b nonces

= f i l te r (λn→pred (hash {b & nonce=n})) nonces

Mining a block in FP

mine :: HashFun Predicate Block [Int] → [Int]
mine hash pred b nonces

= f i l te r (λn→pred (hash {b & nonce=n})) nonces

Mining the blockchain

mineChain :: HashFun Predicate Int String [String] → BlockChain
mineChain hash pred seed prev [] = []
mineChain hash pred seed prev [s:ss]

b = {nonce=0, prev=prev, data=s}
b & nonce = hd $ mine hash pred b $ genRandInt seed
= [b:mineChain hash pred seed (hash b) ss]

What was iTasks again?
Task Oriented Programming (TOP)

iTasks

I Tasks are basic blocks

I Combine with combinators

I Generated multi-user web interface

Task

I Statefull function

I Observable value

What was iTasks again?
Task Oriented Programming (TOP)

iTasks

I Tasks are basic blocks

I Combine with combinators

I Generated multi-user web interface

Task

I Statefull function

I Observable value

What was iTasks again?
Task Oriented Programming (TOP)

iTasks

I Tasks are basic blocks

I Combine with combinators

I Generated multi-user web interface

Task

I Statefull function

I Observable value

Shared Data Sources

SDS

I JSON file on disk

I iTasks resources

I Hardware access

I Lenses and combinators

I Lean notifications via publish/subscribe

How to store the blockchain

:: SDS p r w =. . .
:: Shared a :== SDS () a a
:: RWShared
sharedStore :: String a→ Shared a
mapRead :: (r → r ‘) (SDS p r w) → SDS p r ‘ w
toReadOnly :: (SDS p r w) → SDS p r ()

blockchain :: Shared BlockChain
blockchain = sharedStore ”Blockchain” []

newblock :: ReadOnlyShared Block
newblock = toReadOnly (mapRead read blockchain)
where

read x = {nonce=0, prev=last [””:map hash x] , data=””}

How to store the blockchain

:: SDS p r w =. . .
:: Shared a :== SDS () a a
:: RWShared
sharedStore :: String a→ Shared a
mapRead :: (r → r ‘) (SDS p r w) → SDS p r ‘ w
toReadOnly :: (SDS p r w) → SDS p r ()

blockchain :: Shared BlockChain
blockchain = sharedStore ”Blockchain” []

newblock :: ReadOnlyShared Block
newblock = toReadOnly (mapRead read blockchain)
where

read x = {nonce=0, prev=last [””:map hash x] , data=””}

Main Task

(-||) :: (Task a) (Task b) → Task a
(||-) :: (Task a) (Task b) → Task b
(-||-) :: (Task a) (Task a) → Task a

Start w = startEngine bc w

bc :: Task BlockChain
bc = viewSharedInformation () [chainv] blockchain

-|| whileUnchanged newblock (forever o addBlock)

Main Task

(-||) :: (Task a) (Task b) → Task a
(||-) :: (Task a) (Task b) → Task b
(-||-) :: (Task a) (Task a) → Task a

Start w = startEngine bc w

bc :: Task BlockChain
bc = viewSharedInformation () [chainv] blockchain

-|| whileUnchanged newblock (forever o addBlock)

Adding a block

addBlock :: Block→ Task ()
addBlock b = updateInformation ”Block” [blockv] b

>&̂ viewSharedInformation ”Hash” [] o mapRead (fmap hash)
�∗ [OnAction (Action ”Mine”) $ hasValue mineBlock

, OnAction (Action ”Add”) $ ifValue (pred o hash) addToChain
]

where
addToChain b = upd (λc→c ++ [b]) blockchain @! ()

mineBlock bl = get randomInt
�= compute ”Mining” o hd o mine bl o genRandInt
�=λn→addBlock {bl & nonce=n}

mine :: Block [Int] → [Int]

How does it look

Properties

I Multiuser

I No useless mining

I Example less then 100 LOC

I One source

Conclusion

I Mining on server

, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy

, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things:

Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution,

Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces,

Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,

Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

Conclusion

I Mining on server, solve with editlets

I One blockchain copy, solve with distributed iTasks (also solves
previous)

I Difficult things: Distribution, Interfaces, Validation,
Notifications

I Free in TOP

	Blockchain
	Blockchain in FP
	iTasks
	Blockchain in iTasks
	Properties & Limitations
	Conclusion

