The Problem of the Dutch National Flag

Wouter Swierstra
Vector Fabrics

FP Dag 2010
There is a row of buckets numbered from 1 to n. It is given that:

- each bucket contains one pebble
- each pebble is either red, white, or blue.

A mini-computer is placed in front of this row of buckets and has to be programmed in such a way that it will rearrange (if necessary) the pebbles in the order of the Dutch national flag.

A Discipline of Programming, E.W. Dijkstra
Specification

- The mini-computer supports two commands:
 - swap \((i,j)\) exchanges the pebbles in buckets numbered \(i\) and \(j\) for \(1 \leq i,j \leq n\);
 - read \((i)\) returns the colour of the pebble in bucket number \(i\) for \(1 \leq i \leq n\).

- Solution should use one pass only and constant memory.
The Problem of the Dutch National Flag

Wouter Swierstra
AIM X
The Problem of the
Dutch National Flag

Indonesian

Wouter Swierstra
AIM X
Known to be white
Known to be white

Known to be red
Verified Solution

- Implement the mini-computer in the dependently typed language Agda;
- Write a total solution for the Problem of the Dutch National Flag;
- Formally prove our solution is correct.
Pebbles and Buckets

data Pebble : Set where
 Red : Pebble
 White : Pebble

data Buckets : Nat -> Set where
 Nil : Buckets Zero
 Cons : Pebble -> Buckets n -> Buckets (Succ n)
Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)
Indices

data Fin : Nat -> Set where
 Fz : Fin (Succ n)
 Fs : Fin n -> Fin (Succ n)
The state monad

State : Nat -> Set -> Set
State n a =
 Buckets n
 -> Pair a (Buckets n)
Reading

read : Fin n -> State n Pebble
read i bs = (bs ! i , bs)

where

(Cons p ps) ! Fz = p
(Cons p ps) ! (Fs i) = ps ! i
Swap

swap : Fin n -> Fin n
 -> State n Unit

swap i j =
 read i >>= \pi ->
 read j >>= \pj ->
 write i pj >>
 write j pi
Back to the problem
An approximation

sort :: Int -> Int -> IO ()

sort w r =
 if w == r then return ()
else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)
An approximation

Why does this terminate?

sort :: Int -> Int -> IO ()
sort w r =
 if w == r then return ()
 else case read w of
 White -> sort (w + 1) r
 Red -> swap w r >>
 sort w (r - 1)
sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White -> sort (w + 1) r
 Red -> swap r w >>
 sort w (r - 1)
An approximation

sort :: Int -> Int -> IO ()

Only terminates if $w \leq r$

sort r w =
 if r == w then return ()
 else case read r of
 White ->
 Red -> swap r w >>
 sort r (w - 1)
 sort (w + 1) r
 sort w (r - 1)
Manipulating Fin n

sort :: Int -> Int -> IO ()
sort r w =
 if r == w then return ()
 else case read r of
 White -> sort (w + 1) w
 Red -> swap r w >>
 sort r (r - 1)
Two problems

• We need to increment and decrement inhabitants of \texttt{Fin n};

• We need to prove that our algorithm terminates.
Fs : Fin n -> Fin (Succ n)
Injection

\[\text{inj} : \text{Fin } n \to \text{Fin } (\text{Succ } n) \]
\[\text{inj } Fz = Fz \]
\[\text{inj } (Fs \ i) = Fs \ (\text{inj } i) \]
Fs or inj

0 1 2 3

Fs

0 1 2 3

inj

0 1 2 3
Idea

• Only increment the image of inj;
• Only decrement the image of Fs.
data Diff : (i j : Fin n) → Set where
 Base : (i : Fin (Succ n) → Diff i i
 Step : (i j : Fin n) → Diff i j → Diff (inj i) (Fs j)
Sort – Base case

sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit

sort i i Base = return unit
sort : (w r : Fin n) ->
 Diff w r ->
 State n Unit
sort (inj w) (Fs r) (Step w r p)
 = read (inj w) >>= \p ->
 case p of
 White -> sort (Fs w) (Fs r) ?
 Red ->
 swap (inj w) (Fs r) >>
 sort (inj w) (inj r) ?
Lemmas

- We need to prove a few useful lemmas:
 - \(\text{Diff } i \ j \rightarrow \text{Diff } (F\text{s } i) \ (F\text{s } j) \)
 - \(\text{Diff } i \ j \rightarrow \text{Diff } (\text{inj } i) \ (\text{inj } j) \)
Verification
Verification

the easy part
Correctness Theorem

forall (h : Buckets n) (w r : Fin n),
(p : Diff w r) ->
(forall i -> i < w -> h ! i == White) ->
(forall i -> r < i -> h ! i == Red) ->
exists (m : Fin n),
 let h’ = sort w r p h in
 forall i -> i < m -> h’ ! i == White
 && forall i -> i > m -> h’ ! i == Red)
Proof sketch

- Proof proceeds by induction on Diff
- Distinguish three cases:
 - Base case (trivial);
 - No swap happens (not too hard);
 - Swap happens (a bit trickier).
- In the latter two cases, we establish the invariant holds and make a recursive call.
Conclusions

- It is possible to reason about “impure” computations using Agda;
- A simple algorithm leads to simple proofs.